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In this paper we present the asymptotic solutions of the Poisson-Nernst-Planck equations describing ion
transport near a polarized electrode under ac. The solutions can be described in terms of the triple-layer �or
quadruple-layer in the transient period� structure. In the thinnest inner layer outside the Stern layer, cations and
anions show alternating charging with the same frequency as ac. Next to the inner layer is a buffer region or
“middle layer” in which cations and anions exhibit the same behavior but with a frequency double that of the
ac frequency. The outer layer shows quasisteady diffusion of ions expanding toward the bulk region and
vanishes after the transient period. The potential drop occurs only through the inner layer, which together with
the concentrations can be obtained by solving a simple dynamical equation. The asymptotic method is applied
to the one-dimensional ion-transport within two parallel facing electrodes and the solutions compare well with
the ones obtained with robust numerical methods for the original full equations at various ranges of parameters.
We also considered the effect of ion adsorption at the interface between the Stern and inner layers on the ion
transport and the virtual slip velocity for the case of facing electrodes.
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I. INTRODUCTION

It is well known that a solid surface when in contact with
an electrolyte is usually negatively charged so that the coun-
terions in the electrolyte are attracted to and the coions are
repelled from the interface. The thin layer near the interface
showing such unbalanced distribution of ions is called the
electrical double layer �EDL�, and it is known to be com-
posed of basically two layers. The innermost layer, called the
Stern layer, is free of charge and almost motionless because
of the strong electrical force exerted from the solid wall. The
remaining one, called the diffuse layer, has more cations than
anions. When an electric field is externally applied parallel to
the interface, the mobile cations and anions in the diffuse
layer tend to move toward the cathode and anode, respec-
tively. Since more cations than anions are distributed in the
layer, the overall effect is that a fluid flow toward the cathode
is induced. The fluid velocity at the edge of the diffuse layer
is calculated by using the well known Helmholtz-
Smoluchowski equation. Since in microfluidic devices the
fluid is confined in a space with small length scales, the bulk
fluid out of the EDL is pulled immediately by the edge ve-
locity, and for the channel case the velocity profile takes a
plug-type form. This effect is called the dc electroosmosis
�1�.

The electroosmosis described above is an example of the
EDL effect under a dc electric field. Very recently, however,
increased attention has been given to the application of ac
electric field in the microfluidic flow and particle controls. In
this case, the dynamic phenomena of ion transport in the thin
layer on the electrode receiving an ac electric field drive the
fluid motion. The response of the layer to ac is more inter-
esting and of course more dynamic than dc. The forcing
frequency serves as another control parameter, and so ac is
more feasible to use than dc. Further, the electrode life be-

comes longer with ac. Use of ac in controlling particle as-
sembly in small devices has been discussed recently by sev-
eral research groups. Trau et al. �2� showed the long-range
attraction of 2-�m-size particles on indium-tin oxide �ITO�
electrodes, and they attributed such phenomenon to the hy-
drodynamic force exerted by the induced charge on the elec-
trode. Green’s group �3,4� reported separation of sub-
micrometer particles on the array of electrodes, and they
conjectured that heat generation and the subsequent gradient
of the conductivity and permittivity of the medium may in-
duce the hydrodynamic force which produces the particle
motion. Later, they introduced the concept of ac electric-
field-induced flow and electrode polarization to explain their
experimental findings and proposed a simple capacitor model
to verify the magnitude of the measured velocity �5�. How-
ever, the predicted velocity turned out to be much greater
than the measured one. Another research group �6� attempted
to fit the data of the Green’s group with their theoretical
model �7� without success. Later Green et al. �8� refined their
capacitor model by introducing another parameter represent-
ing the effect of potential drop across the compact �Stern�
layer.

Much of experimental evidence of the ac electroosmosis
has been further reported in association with particle migra-
tion and assembly. Wong et al. �9,10� fabricated a circular
electrode surrounded by a circular strip of counter electrode
and used PIV �particle image velocimetry� to measure the
fluid velocity induced by the ac electroosmosis. The mea-
sured velocity shows its dependence on the frequency and
the electrolyte concentration. They also demonstrated the
trapping of DNA molecules. Brown and Meinhart �11� also
conducted a DNA-concentration experiment with a very
similar electrode arrangement as that of Wong et al. �9�.
Their numerical results were, however, two orders of magni-
tude greater than the measured ones, and the predicted opti-
mum frequency, at which the velocity becomes maximum,
was also more than two orders of magnitude smaller than the
experimental ones. Several experiments on the evidence of
particle aggregation along the center of electrode strip have*Correspondig author. FAX: 82-51-200-7656. yksuh@dau.ac.kr
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also been reported �12–15�. Bhatt et al. �16� demonstrated
the collection and concentration of latex particles and yeast
cells around the patterned electrodes. Wong et al. �9� re-
viewed various electrokinetic effects and their application in
biotechnology. The ac electroosmotic effect is mostly com-
bined with the dielectrophoretic effect in control of the par-
ticles �e.g. �17,18��.

The ac electroosmotic phenomena can be applied to vari-
ous fields of microfluidics. Mpholo et al. �19� showed that
the plug-type flow profile can be achieved by placing two
anisotropic arrays of electrodes in pumping fluid in a chan-
nel. Studer et al. �20� presented a fabrication method for the
pumping device using ac electroosmosis. In order to pump
fluid by using the ac electroosmotic effect, breaking of sym-
metry in the electric field �usually by using asymmetric ge-
ometry in the shape of electrodes themselves or in their ar-
rays� is necessary. Bazant and Squires �21� and Squires and
Bazant �22� gave examples of electrode arrays for such pur-
poses. The ac electroosmosis can also be used in fluid mix-
ing. Wang et al. �23� exhibited a turbulent-like mixing within
a chamber containing small conductive granules by applying
dc and ac fields. They attributed the enhanced mixing to the
vortices around the granules caused by the induced charge
electroosmosis, as predicted by Bazant and Squires �21�. On
the other hand, Wu et al. �14� observed asymmetric flow
patterns even with the symmetric electrode configuration,
and they explained the phenomenon in terms of asymmetric-
polarization, in which the Faraday reaction is to occur on the
electrodes.

The basic ingredient of the above ac electroosmotic phe-
nomena is the ion transport within the layer, and this is de-
coupled from the fluid-flow problem because the ion trans-
port given by the convection can be neglected in most
practical cases. So, the very beginning point of the funda-
mental study on the ac electroosmosis should be the analysis
of the ion transport in the layer. The governing equations for
the ion transport within the layer are the Poisson-Nernst-
Planck equations, which describe the conservation of ions
�Nernst-Planck equation� and the relation between the elec-
trical potential and charge density �Poisson equation�. As
widely surveyed by Bazant et al. �24�, theoretical treatment
of the Nernst-Planck equation goes back to Helmholtz. Since
then the electrical effect of the layer on the bulk electrolyte
has been studied in terms of the development of an electrical
circuit model or simply the capacitor model representing the
relation between the accumulation of charge in the layer and
the potential drop across the EDL �refer to the literature
given by Bazant et al. �24� for the old references�. The very
recent theoretical touch on the Poisson-Nernst-Planck equa-
tion was initiated by Bazant group �24–27�. They considered
the induced-charge electroosmosis around a conducting cir-
cular cylinder and showed that various flow patterns are pos-
sible depending on the externally applied electric field. They
then applied their analytical method to the transient charging
of an electrolyte between a pair of facing electrodes caused
by impulsive application of a constant potential difference
between the electrodes �24�. Their important findings and the
possible applications are summarized in �21�. They also con-
ducted a simple experiment for the case with a metal wire
located within a microchannel receiving ac field �25�. Their

capacitor model, however, showed deviation from the experi-
mental observation. On the contrary, the model of Green et
al. �8� fitted the data well, but the physical ground of their
model has not been established yet.

In this paper we propose the electrical triple layer �or
electric quadruple layer when the transient is included� in-
stead of the EDL as the correct structure of the electrokinetic
thin layer near the electrode surface as far as the ion trans-
port is concerned in a nonlinear regime under ac field. Our
assertion is firstly based on the numerical solution to the
one-dimensional �1D� Poisson-Nernst-Planck equation, and
then it is verified from the asymptotic solutions for each
layer. In the following section, we will present the governing
equations and the numerical methods. The asymptotic analy-
sis is then provided in Sec. III for each of the three layers.
The approximate equations in each layer are derived in part
from an order-estimation principle and in part from the nu-
merical results. A simple dynamical equation for the surface
charge density �charge per unit area�, which can be used as a
boundary condition for the Laplace equation for the potential
in the bulk, is next derived. We apply our asymptotic method
to the ion-transport problem within two parallel facing elec-
trodes to validate our model. In this section, we also describe
in detail the role of the middle layer in the ion-transport
process through the whole layer. Further discussion on the
issue of the multiple-layer structure of the nearby field of the
electrodes is provided in Sec. VI. Effect of the ion adsorption
at the interface between the Stern and inner layers on the ion
transport is then discussed in Sec. VII with the aid of the
asymptotic solutions, which is followed by conclusions in
Sec. VII.

II. GOVERNING EQUATIONS AND NUMERICAL
METHODS

Time evolution of the ion number concentrations c*+ and
c*−, the electric potential �* and the electric charge density
�charge per unit volume� �

e
* is determined by the following

Poisson-Nernst-Planck equations �see, e.g. �24��:

�c*�

�t*
= D��*2c*� � � ze

kbT
��* · �c*��*�*�� , �1a�

�* · ���0�*�*� = − �
e
*, �1b�

�
e
* = �c*+ − c*−�ze , �1c�

where t* is the time, �x* ,y*� the spatial coordinates for 2D
problem, D the ion diffusivity, z the valence of the �symmet-
ric� ions, e the electron charge, kb the Boltzmann constant, T
the temperature, � the dielectric constant of the electrolyte,
and �0 the permittivity of vacuum. In this formulation we
assume a dilute monovalent symmetrical electrolyte �z=1�
with uniform temperature so that D, � and T remain constant.
The first and second terms within brackets on the right-hand
side �RHS� of Eq. �1a� reflect the diffusion and conduction
�or migration� of ions, respectively. In order to make the
equations dimensionless, the variables are scaled as follows:
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�x* ,y*�=L�x ,y�, t*= t /�, c*�=c
0
*c�, �*=�

ref
* �, and �

e
*

=c
0
*ze�e, where L is the reference length such as distance

between the electrodes, � the angular frequency of the ex-
ternal ac potential, c

0
* the bulk concentration of each ion, and

�
ref
* = �L /�d�2�D /L2���* /2 the reference potential. Selecting

this as the reference potential is just a matter of convenience;
the number of dimensionless parameters explicitly appearing
in the dimensionless equations is reduced �but additional pa-
rameter of course appears in the boundary condition�. Fur-
ther, �d=	��0kbT /2c

0
*z2e2 is the Debye screening length and

�*=kbT /ze the thermal potential. Then the dimensionless
form of Eqs. �1a�–�1c� is

�c�

�t
= �1

2��2c� � 	 � · �c� � ��� , �2a�

�1
2�2� = − �e, �2b�

�e = �c+ − c−� , �2c�

where dimensionless parameters are

	 = �ref
* /�* =

1

2
�L/�d�2�1

2, �1 = 	D/L2� . �3�

In deriving Eq. �2b� from Eq. �1b�, it is assumed that � is
constant. Interpretation of these parameters is easier if we
introduce the diffusion length scale

�dif = 	D/� , �4�

that represents the spatial range in which diffusion of the ion
concentrations takes place during the ac time scale 1 /� �in
fact, �dif corresponds to the middle-layer thickness as will be
shown later�. Then, �1 can be understood as the ratio of �dif
to the bulk size L, i.e., �1=�dif /L. Further, 	 can be inter-
preted as either the ratio of the reference potential to the
thermal potential, as explicitly shown in Eq. �3�, or 	
= ��dif /	2�d�2 in terms of the length scales.

We expect a thin layer structure near the electrode and
also the bulk region outside the layer. Ions are expected to be
neutralized in the bulk region, and so the following Laplace
equation governs the potential distribution in the bulk:

�2� = 0. �5�

For a typical example, we assume L=20 �m, �
=100 rad /s, D=10−10 m2 /s, T=300 K, and the bulk concen-
tration 10−3 M of KCl solution. Then, we get �*=26 mV,
�1=0.05, and 	=5260. Notice that the value of 	 is very
large for this typical case. Here, we are interested in the case
of small �1 and large 	 so that the nonlinear, ion migration
term can have the same importance as the diffusive term in
the inner layer.

In this study, we further assume that the variation of the
variables along the electrode surface is much smaller than
that along the normal direction. Under this assumption, Eqs.
�2a�–�2c� are simplified to 1D form as follows.

2
�f

�t
=

�2f

�Y2 +
�

�Y
�	f

��

�Y
� , �6a�

2
�g

�t
=

�2g

�Y2 −
�

�Y
�	g

��

�Y
� , �6b�

�2�

�Y2 = 2�g − f� , �6c�

where c+ and c− are replaced with f and g, respectively, and
Y =n / �	2�1� is used to strain the dimensionless normal co-
ordinate n=n* /L.

We need boundary conditions for f and g. In this study we
do not consider electrode reaction, i.e., we assume com-
pletely polarized electrodes. Under this assumption, usually
the zero ion-flux is applied at Y =0, the outer edge of the
Stern layer. However, we permit non-specific ion adsorption
of ions at Y =0 so that we have

d
�

dt
= J0

�, �7�

where J0
� denotes the dimensionless flux of each ion

J� =
�c�

�Y
� 	c���

�Y
�8�

evaluated at Y =0, and 
� the dimensionless areal concentra-
tion of each ion adsorbed at the interface. We further need
the relation between the adsorbed amount of ions and the
nearby concentration of ions at the interface. In this study we
employ the following formula:


+ =

max�f0

1 + ��f0 + g0�
, �9a�


− =

max�g0

1 + ��f0 + g0�
, �9b�

where f0 and g0 indicate evaluation of f and g at Y =0. In
fact, Eqs. �9a� and �9b� correspond to the Langmuir iso-
therm. Here 
max is the limit value of 
� available at f0
→� or g0→�. Its physical value 


max
* should be of

O�1 /a*2� where a* is the ionic radius. Further, the dimen-
sionless parameter � controls the rate of increase of 
� upon
change of f0 or g0 for their small values. It can be shown that
the reference quantities for nondimensionalization are J

ref
*

=Dc
0
* / �	2�1L� for J� and 


ref
* =J

ref
* /� for 
� and 
max. We

may use different values of 
max and � for cations and an-
ions, but for the simplicity of formulation we take the same
values for both. It should be noted that similar isotherm has
been used by Mangelsdorf and White �28,29� in their linear
analysis of the mobility of spherical colloidal particles under
ac. In fact, we follow their assumption that the adsorption
time scale is short enough so that equilibrium state of Eqs.
�9a� and �9b� is readily attained between the adsorbed ions
and nonadsorbed nearby ions.

Boundary condition for the potential at Y =0 can be de-
rived from the fact that the Stern layer has no charge accu-
mulation ��

e
*=0� but the interface has nonequilibrium ad-

sorption �
+�
−�. Neglecting again the tangential variation
of �*, we can derive from integration of Eq. �1b� the fact
that the potential gradient within the Stern layer is uniform.
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This gradient is readily formulated in terms of the electrode
potential V

0
*=V

00
* cos �t*, the potential at the interface �

0
*

and the Stern-layer thickness �S as follows.

� ��*

�n*
�

0−
=

�0
* − V00

* cos �t*

�S

.

Here, V
00
* is the amplitude of the external ac potential. Next,

we integrate Eq. �1b� over the infinitely thin interface, where
adsorbed ions are accumulated, to get

��0� ��*

�n*
�

0+
− �S�0� ��*

�n*
�

0−
= − ze�
*+ − 
*−� ,

where �S denotes the dielectric constant of the Stern layer.
Then, we obtain the following dimensionless equation:

�0 = V00 cos t + �2� ��

�Y
�

0
+ �2a, �10�

where a, the dimensionless surface charge density caused
by the adsorption, is given by a=
+−
−, and

�2 =
�S�/�S

	2�1L
. �11�

The numerator in Eq. �11� can be considered as an effective
thickness of the Stern layer; �Seff=�S� /�S. Then the small
parameter �2 can be understood in terms of the length scales
as �2=�Seff /	2�dif.

As the boundary conditions for Eqs. �6a� and �6b� at the
outer edge of the layer, we apply two kinds. When the bulk
space is much larger than the layer, we simply assume that
the bulk concentrations remain at the equilibrium values: f
=g=1 at Y =Ym, where Ym denotes the end of the computa-
tional domain. For the case of parallel facing electrodes with
half spacing Ym, to be presented in Sec. IV, we set the sym-
metric boundary condition: �f /�Y =�g /�Y =0 at Y =Ym. The
boundary condition for Eq. �6c� at the outer edge of the layer
depends on a specific problem in hand.

The numerical solutions of Eqs. �6a�–�6c� were obtained
by using a finite volume method with very fine grids near
Y =0 to resolve very steep profile of the variables in this
region. The grid refinement was established by setting uni-
form grids in a new variable � and using the following map
function:

Y = Yn�� +
1

2
�Yp� − Yn���� +

1

s
ln� cosh s�� − �e�

cosh s�e
�� ,

where Yn� and Yp� are constants representing the relative size
of the grid spacing at Y =0 and Y =Ym, respectively, and �
=�e denotes the border between the fine-grid region for
the inner layer and the coarse-grid region for the rest.
The parameter s controls the spatial range of the grid varia-
tion near �=�e. Those parameters are determined from
several requirements. First we set �m=Ym. Then 10% of
the total grids are designed to be clustered in the inner layer,
i.e., we set �e=0.1�m, and the inner layer thickness is esti-
mated to be Ye=5 /		 based on the asymptotic solution; at
low L values, however, we increase �e in order to avoid
numerical instability. We also apply an empirical formula

Yn� =0.05�Ye /�e� based on several test runs. Typical values
used in this study are Ym=�m=18, �e=1.8, Yp� =1.11,
Yn� =0.0013, and s=8.8 for the total number of grids 4000.
The variables f , g, and � are defined at the same nodal
points. The Crank-Nicolson method is applied in treating the
transient term, and a fully implicit algorithm is applied in
time advancing. Use of the implicit algorithm then permits
us to choose a rather large time increment �t, its typical
value being 0.003.

When one wants to perform numerical simulation of Eqs.
�2a�–�2c� for the whole region of the electrolyte surrounding
the electrodes, including both the bulk region and the thin
layer, one may need to satisfy an enormous storage require-
ment because the thin layer must be resolved with very fine
mesh and the bulk region, much wider than the layer, also
needs considerable number of grids. More importantly, the
system of equations must be solved in a transient way be-
cause the ion transport within the layer is highly nonlinear in
most practical problems. In this case, the analytic form of the
solutions for the ion transport problem as will be provided in
the following section may reduce the computational require-
ment enormously.

III. ASYMPTOTIC SOLUTIONS

We present asymptotic solutions of the 1D equations
�6a�–�6c�. As stated previously, we are interested in the case
of large 	, so that the governing equations are nonlinear.
�Notice that Bazant et al. �24� defined the nonlinearity by the
ratio �d /L.� It was found from many numerical simulations
at large 	 that there exist three subregions within the layer
aside from the Stern layer, in each of which the solution
takes distinctively different form, as illustrated in Fig. 1. The
innermost region �to be called “inner layer” hereafter� is the
thinnest and is characterized by a very steep spatial profile of
variables evolving in time with the same fundamental fre-
quency as the external one, in a nonlinear �nonharmonic�
manner. The region next to the inner layer �to be called
“middle layer”� is thicker than the inner layer, but the vari-

* *
0/c c+

*n

outer

bulk state

( )dO λ ( / )O D ω *( )O t D

1

layer
middle
layer

inner
layer

Stern
layer

electrode
wall

FIG. 1. Dynamical range of the cation’s concentration during
one period of ac. Note that the inner layer oscillates once and the
middle layer twice per external period. The outer layer shows qua-
sisteady dispersion of concentrations expanding to the bulk and
finally disappears after a long time.
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ables change more smoothly in time with the frequency
twice that of the external one. The outermost layer �to be
called “outer layer”� shows quasisteady development of the
variables and the region expands slowly in time, in a really
diffusive manner. Such distinctive nature of the solutions in
each layer of course comes from the fact that each term in
Eqs. �6a� and �6b� shows a completely different level of rela-
tive importance depending on the layer. Within the inner
layer, the numerical results show that the LHS terms of Eqs.
�6a� and �6b� are negligibly small and the diffusion and con-
duction terms balance with each other. Within the middle and
outer layers, the conduction term is negligible and the tran-
sient and diffusion terms balance with each other.

A. Inner layer

Based on our numerical results, we expect a very thin
inner layer near Y =0, its thickness being observed to de-
crease as 	 is increased. So, we may put Y 
	−n, � / f

	−m and g / f 
1 �m ,n�0�, estimate the order of magni-
tude of each term in Eqs. �6a�–�6c� and consider the balance
of magnitude among those terms to derive m=1 and n
=1 /2. In the limit of 	→�, therefore, we can neglect the
LHS of Eqs. �6a� and �6b�, which is in accordance with the
numerical results. Finally, we propose the following form of
approximate equations for the inner layer:

f� + 	f� = 0, �12a�

g� − 	g� = 0, �12b�

where �=�� /�Y is the potential gradient and the prime de-
notes � /�Y. These results just indicate that the charging time
in the inner layer is much shorter than the external forcing
period; i.e., the quasiequilibrium assumption holds in this
layer �see, e.g. �24��. These equations are to be solved to-
gether with Eq. �6c�. For the moment, we derive the Boltz-
mann distribution equations: f =exp�−	��−���� and g
=exp�+	��−����, where �� stands for the asymptotic value
of � at infinity. Hereinafter the subscript � indicates the
asymptotic value of the variable at infinity, Y →�, i.e., the
outer limit of the inner variable.

To obtain the analytic solutions for the inner layer equa-
tions, we first multiply Eq. �6c� by �, apply Eqs. �12a� and
�12b�, and then integrate once to get

f + g =
	

4
�2 + 2, �13�

where �� has been neglected. Subtracting Eq. �12b� from
Eq. �12a� and substituting Eqs. �13� and �6c� into the result
yields

�� = 	��	

2
�2 + 4� .

Multiply this by �� and integrate once more to obtain

�� = − �		2

4
�2 + 4	 .

The negative sign was chosen to ensure �→0 as Y →�.
This is integrated to become

� =
�	16/	

sinh�	4	�Y + Y0��
, �14�

where the integration constant Y0�t� should be determined
from an integral constraint to be satisfied over the whole
layer. Explanation will be given shortly as to which sign
should be chosen in Eq. �14�. We can integrate this once
more to obtain �:

� = �� �
1

	
ln� cosh�	4	�Y + Y0�� − 1

cosh�	4	�Y + Y0�� + 1
� . �15�

The solution f can be obtained by substituting Eq. �14� into
Eq. �12a� and integrating the result:

f = � cosh�	4	�Y + Y0�� + 1

cosh�	4	�Y + Y0�� − 1
��1

. �16�

The anion’s concentration g is the inverse of f in this layer,
that is g= f−1. By introducing a new variable q�t� defined as
the � value evaluated at Y =0, we can write f and � in terms
of q instead of Y0 as follows:

f =
	16/	 + q2 cosh�	4	Y� + 	16/	 sinh�	4	Y� + q
	16/	 + q2 cosh�	4	Y� + 	16/	 sinh�	4	Y� − q

,

�17�

� = �� −
1

	
ln f . �18�

The relation between q and Y0 can be derived by evaluating
Eq. �14� at Y =0:

q =
�	16/	

sinh�	4	Y0�
. �19�

It can be shown that q corresponds to dimensionless areal
charge density caused by the nonequilibrium distribution of
ions in the inner layer. In order to avoid singularity at Y
=Y0 �refer to Eq. �14��, we must ensure Y0�0. This means
we must choose the +sign for q�0 and the −sign for q�0.
In fact, the solutions derived so far are known as the Gouy-
Chapman-Stern model �24�.

Now to obtain the equation that determines the function
q�t� or Y0�t�, we use the integral constraint

2�
0

� ��f − g�
�t

dY = 2	�� − �J0
+ − J0

−� , �20�

which can be derived by subtracting Eq. �6b� from Eq. �6a�,
integrating over the full domain, and then applying the
boundary conditions �7�. As will be shown later, the inte-
grand on the LHS of Eq. �20� vanishes in the middle and
outer layers because f =g asymptotically in these layers.
Therefore, it suffices to consider only the inner layer solu-
tions in evaluation of the LHS term of Eq. �20�; but this
simplification does not hold for the integral constraint for
each of f and g, because the middle layer contains the com-
parable amount of ions as will be shown in the middle-layer
analysis. The LHS of Eq. �20� becomes �g0− f0�dY0 /dt. We
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can derive the formula for dY0 /dt in terms of dq /dt from Eq.
�19� and that for g0− f0 or f0

−1− f0 from Eq. �17�. Then LHS
of Eq. �20� simply becomes dq /dt. On the other hand, the
second term on the RHS of Eq. �20� can be shown after some
algebra to become

J0
+ − J0

− = �
dq

dt
,

where � is a function of q:

� =
8
max�		�8 + 16� + 	q2�
	16 + 	q2�4 + 8� + �	q2�

. �21�

Then Eq. �20� reduces to

dq

dt
=

2	��

1 + �
. �22�

This very simple dynamic equation indicates that the func-
tion q�t� is determined from the potential gradient, or the
normal component of the electric field, at infinity and the
factor ��0 representing the adsorption effect. Further, we
note that inclusion of the adsorption brings decrease of the
magnitude of the areal charge density q within the inner
layer for the same external potential gradient ��.

We now consider the Stern layer model �10�. The LHS
term �0 can be written in terms of q from Eqs. �17� and �18�
as follows:

�0 = �� +
1

	
ln�	16/	 + q2 − q

	16/	 + q2 + q
� . �23�

Then Eq. �10� becomes

�� = V00 cos t + �2q −
1

	
ln�	16/	 + q2 − q

	16/	 + q2 + q
� + �2a,

�24�

where a is explicitly calculated from

a =

max�	q	16/	 + q2

4 + 8� + �	q2 . �25�

Now, the results obtained so far clearly demonstrate how
the interaction between the inner layer and the bulk can be
implemented. First, Eq. �22� is used to calculate q. Next, f0
and g0 are determined from Eq. �17� with Y =0 and g0= f0

−1.
Then, 
� is given from Eqs. �9a� and �9b�. Equation �24� is
next used to determine ��, which then serves as one of the
boundary conditions on the electrode surface when solving
the bulk equation �5�. The solution of Eq. �5� finally supplies
the potential gradient ��, which is again used in calculating
q from Eq. �22�, where � is calculated by using Eq. �21�.
This completes one cycle of the single time-step computa-
tion, and the computation continues until a periodic state is
reached.

For later use in the middle-layer analysis, we analyze a
symmetric property of the function q�t�. Replacing q→−q,
t→ t−� and �→−� in Eqs. �22� and �24� makes the equa-
tions invariant. This means that when q�t� is expanded in
Fourier series, all the even modes vanish and only the odd

modes remain, and this was also confirmed from the numeri-
cal results.

B. Middle layer

Based on the numerical results, we propose the following
approximate equation for f in the middle layer:

2
�f

�t
=

�2f

�Y2 . �26�

This can be derived under the assumptions that within the
middle layer the net charge is zero, or f =g, and

�1V00
*

�*
� 1. �27�

Balance between the transient and diffusion term, i.e., Eq.
�26�, means that the thickness of the middle layer should be
of O��dif�, where the diffusion length scale �dif is defined as
Eq. �4�.

It suffices to show derivation of the solution f because the
governing equation and the relevant boundary conditions for
g are identical with those for f . The solution of Eq. �26� can
be written in a series form as follows:

f = f� + 
n=2,4,. . .

�

exp�− 	nY��an cos�nt − 	nY�

− bn sin�nt − 	nY�� , �28�

where f��t� is a slowly varying function of time to be deter-
mined from matching with the outer-layer solution. The con-
stants an and bn are determined from the integral constraint
for f over the whole domain:

�
0

� �f

�t
dY =

1

2
	�� −

1

2
J0

+ =
1

4

dq

dt
−

1

4
�d
+

dt
+

d
−

dt
� .

�29�

In evaluating the LHS we must consider not only the middle
layer but also the inner-layer and outer-layer solutions. For-
tunately, however, the outer layer is characterized by a qua-
sisteady solution as will be shown shortly. Since the un-
known constants in Eq. �28� are to be determined from the
oscillatory components of the solution, we do not have to
consider the outer-layer solution in this analysis. Suppose
now the concentration f is composed of the inner-layer and
middle-layer contributions: f = f i+ fm−1. Substituting this
into LHS of Eq. �29� and applying the formula for the inner-
layer solution f i obtained so far results in

− 4�
0

� �fm

�t
dY = � 1

	16/	 + q2
+

8
��	

�4 + 8� + �	q2�2�q
dq

dt
,

�30�

where the term representing the contribution of the adsorp-
tion is deduced from Eqs. �9a� and �9b� together with Eq.
�17� evaluated at Y =0 and g0= f0

−1.
Now, we can expand the RHS of Eq. �30� in a Fourier

series:

Y. K. SUH AND S. KANG PHYSICAL REVIEW E 77, 031504 �2008�

031504-6



RHS of Eq. �30� = 
n=2,4,. . .

�

�cn cos nt + dn sin nt� .

The reason for considering only the even modes can be un-
derstood from the fact that, as shown in the proceeding sec-
tion, the function q is composed of the odd modes only. Then
we substitute Eq. �28� into the LHS of Eq. �30� and, after
integration, equate the same mode to obtain

an =
dn − cn

4	n
, bn =

dn + cn

4	n
�n = 2,4, . . . � . �31�

Note, in addition, that ��=0 in the middle layer because f
=g; this means that the potential profile should be linear in
the middle layer. We can also predict a peculiar behavior of
the concentrations in this layer. Since the odd mode is van-
ishing in Eq. �28�, the fundamental mode is of second har-
monic; in more practical terms, the concentration should os-
cillate in time at a frequency twice that of the external one.
The reason for such peculiar behavior will be further dis-
cussed in physical terms in the next section.

C. Outer layer

In the outer layer the appropriate equation for f takes the
same form as that in the inner layer, i.e., Eq. �26�. Therefore
in this layer, too, we derive f =g. The numerical solution
implies that this layer is characterized by slowly varying
functions of time. Therefore, we seek the solution of Eq. �26�
in the following form:

f = 1 − C
1

	2t
exp�− Y2/2t� , �32�

where the unknown constant C is to be determined from the
steady or quasisteady �hereafter to be called simply “quasi-
steady”� part of the integral constraint �29�; recall that in the
analysis of the middle layer we have already satisfied the
oscillatory part of Eq. �29�. Let us decompose the function f

in each layer into the oscillatory part f̃ and the quasisteady

part f̄ , i.e., f = f̃ + f̄ . Then the quasisteady part of the con-
straint �29� reads

�

�t
�

0

�

� f̄ i + f̄m + f̄o − 2 − f��dY = 0.

Initially, f =1 is imposed everywhere. Therefore, this con-
straint is equivalent to

�
0

�

� f̄o − 1�dY + �
0

�

� f̄ i − 1�dY = 0, �33�

where f̄m= f� is used. We can integrate the first term of Eq.
�33� by applying Eq. �32� and the second term by Eq. �17� to
obtain

C =
1

2	�
� 1

2�
�

0

2�

	16/	 + q2dt − 	16/	� . �34�

Matching with the middle layer further provides the formula
for f��t�:

f� = 1 −
C

	2t
. �35�

When the initial distribution of f �and g� is intentionally
given such that the non-zero value of f −1 �and g−1� occurs
only in the inner layer and the integral of this is the same as
the second term of Eq. �33�, then the value C should be
almost zero.

The composite solution for the concentration is con-
structed by summing up all the contributions from the three
layers and then subtracting the common parts:

f = f i + fm + fo − f� − 1,

which applies to the anion concentration too. On the other
hand, the net electric potential is given by summing the po-
tential in the inner layer �i and that in the bulk �b and then
by subtracting the common value:

� = �i + �b − ��

IV. VALIDATION OF THE SOLUTIONS

In order to validate our asymptotic solutions, we consider
the ion transport problem in a cell confined between two
parallel facing electrodes. We assume an infinite extent of the
electrodes so that 1D analysis became valid for both the layer
and the bulk. The distance between one of the electrodes and
the centerline is chosen as the length scale L. Let one of the
electrodes be situated at Y =0 and the centerline at Y =Ym.
Then the potential in the bulk has the linear profile

� = �� − ���

Ym
�Y ,

where ��, to be determined from Eq. �24�, corresponds to
the bulk potential evaluated on the electrode surface. Apply-
ing this to Eq. �22� and using Eq. �24�, we obtain the follow-
ing dynamical equation for q:

dq

dt
=

2

�1 + ��Ym
�ln�	16/	 + q2 − q

	16/	 + q2 + q
�

− �2	q − 	V00 cos t − �2a� . �36�

From the numerical simulation of this, we have found that
after a few periods the solution q approaches to a periodic
state regardless of the initial value for q. Notice that the RHS
can be evaluated explicitly and thus it is not required to solve
a nonlinear algebraic equation as in the dynamical equation
proposed by Bazant et al. �24�. Further, their solution is
given in an integral form, but in a practical sense the two
solutions should be equivalent except for the adsorption
terms, of course.

As a typical case, we set L=100 �m and choose “electro-
lyte A” of HCl used in Refs. �5,8�: c

0
*=c

0A
* �0.85

�1023 m−3; D=1.92�10−9 m2 /s. Further, we assume T
=288 K, �Seff=3.5 nm, V

00
* =0.25 V, and set the frequency of

the applied potential at 100 Hz. This set of the parameter
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values will be referred to as “standard” hereinafter. Then we
get �*=24.8 mV, �d=25.4 nm, �1=0.017, �2=0.00142, V00
=0.00426, and 	=2363. In addition, we do not consider the
ion adsorption in this section for the understanding of the
fundamental structure of the solutions; the adsorption effect
will be addressed separately in the next section. The se-
quence of obtaining the asymptotic solution is simple. First,
we obtain the time evolution of q from Eq. �36� with initial
value q=0 and �� from Eq. �24� for 20 periods. From this
we can compute the profiles of the inner layer solutions f and

� by using Eqs. �17� and �18�, respectively. The data of the
RHS of Eq. �30� taken during the final period of the calcu-
lation are then expanded in a Fourier series to produce the
coefficients cn and dn, after which we compute the constants
an and bn from Eq. �31�; Table I shows the first seven pairs of
these constants. Further, the constant C is computed from Eq.
�34� and f��t� from Eq. �35�; in this sample case, C
=0.0514 and f��t�=0.9967 at t=19.5T, where T=2� repre-
sents one period of the external ac in the dimensionless unit.
These are next applied to Eq. �28� to obtain f in the middle
layer and to Eq. �32� to obtain f in the outer layer.

Figure 2 shows the asymptotic solutions obtained in this
way in comparison with the numerical ones obtained for the
original equations �6a�–�6c� with the method described in the
last part of Sec. II. In all the three layers the comparison
shows excellent agreement between the numerical and
asymptotic solutions. In the inner layer very steep increase of
the concentrations is observed �Fig. 2�a��. It also reveals in-
crease of maximum of f0 90 times as much as the bulk con-
centration. f0 is further increased at higher 	 and V00. For
instance, at the external potential of 2.5 V, that is 10 times
the present setup, the asymptotic solution shows maximum
of f0 as much as 13 500. It is confirmed that the behavior of
g is exactly inverse of f . Notice also that the concentrations
in the inner layer show positive steady components for both

TABLE I. Coefficients an and bn used in the middle-layer solu-
tion �28� obtained from Eq. �31� and Fourier expansion of the RHS
of Eq. �30�.

n an bn

2 −0.374�10−1 0.644�10−1

4 −0.130�10−1 −0.867�10−2

6 0.293�10−2 −0.526�10−2

8 0.254�10−2 0.109�10−2

10 −0.398�10−3 0.133�10−2

12 −0.721�10−3 −0.127�10−3

14 0.222�10−4 −0.400�10−3
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FIG. 2. Time evolution of profiles of the concentration f and potential � obtained from the numerical simulation �solid lines� and
asymptotic analysis �dashed lines� at the standard parameter set: �a� f in the inner layer during the 20th period; �b� f in the middle layer
during the 20th period; �c� f in the outer layer at four instants; �d� � in the inner layer during the 20th period. Notice that the middle-layer
solution is constructed from the first three pairs of constants shown in Table I.
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f and g, which necessitates the outer layer’s quasisteady de-
velopment in order to satisfy the mass conservation as will
be discussed in more detail below. In the middle layer �Fig.
2�b��, the concentration oscillates in time with the frequency
double that of the external one in accordance with the pre-
diction presented in the previous analysis. Although variation
of f remains much smaller than that in the inner layer, the
spatial range of the middle layer where f varies is much
larger than that of the inner layer. Figure 2�b� also reveals a
distinctive border between the inner and middle layers at Y
=0.1. In the outer layer Y �2 �Fig. 2�c��, the agreement be-
tween the numerical and asymptotic solutions for the quasi-
steady behavior is also excellent. This layer slowly expands
in time and eventually will reach the centerline at Ym=40.5;
after this the asymptotic outer layer solution of course be-
comes less accurate �24�. The reason why the concentrations
remain always less than 1 in this layer comes from the prin-
ciple of mass �ionic concentration� conservation; in the inner
layer the time average of concentrations is larger than 1, and
so the outer layer must show the concentrations lower than 1.
Time evolution of the potential profile, as shown in Fig. 2�d�,
indicates that the potential drop occurs only in the inner
layer, as pointed out above �recall that outer edge of the inner

layer is at Y =0.1; see Fig. 2�b��. Also note that the potential
drop is very gradual compared with those of the concentra-
tions �compare Fig. 2�a� and 2�d��.

Figure 3 shows the time evolution of variables at a point
chosen in the inner layer �Fig. 3�a�� and that in the middle
layer �Fig. 3�b��. In the inner layer the concentrations behave
in nonharmonic �or nonlinear� manner and their time-average
magnitudes are positive. On the other hand, the potential in
this layer exhibits almost harmonic behavior. All the vari-
ables in this layer oscillate once per external-oscillation pe-
riod. In the middle layer, the concentrations oscillate twice
per period �Fig. 3�b��. On the other hand, the potential shows
single oscillation but the behavior is nonharmonic.

The mathematical reason for such double-frequency oscil-
lation of the concentrations in the middle layer was given in
Sec. III B. Here we try to understand that reason and the role
of the middle layer by addressing the dynamics of the ion
transport occurring across the three layers in physical terms.
First we note that the potential drop across the Stern layer,
��S�V0−�0, is small as shown in Fig. 4, and thus the evo-
lution of � in the inner layer is not so different from that of
the external potential as shown in Fig. 3�a�. However, the
potential drop across the inner layer ��i��0−�� �Fig. 4� is
significant, causes a decrease in the amplitude of the poten-
tial �� �almost the same as � in the middle layer shown in
Fig. 3�b��, and makes the phase of �� ahead of V0�t� as much
as T /8; that is, ��i is positive for t /T=−1 /8
3 /8 and
negative for the other time interval during one period as
shown in Fig. 4. Next we note that when �� is positive, the
potential gradient at infinity �� is negative, and vice versa.
So, we understand that ���0 for t /T=2 /8
5 /8 and ��

�0 for the other interval. Our analysis is based on the above
two underlying observations regarding time evolution of ��i
and ��. Further, we need to introduce integrated concentra-
tions F�t� and G�t�, the total amounts of fluctuating compo-
nents of f and g per unit area, respectively, defined as
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FIG. 3. Time evolution of the concentrations f and g and the
potential � obtained from the numerical simulation �solid lines� and
asymptotic analysis �dashed lines� evaluated �a� at Y =9.44�10−4

�inner layer� and �b� at Y =0.2256 �middle layer� with the standard
parameter set. The concentration g is not shown in �b� because it is
indistinguishable from f .
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FIG. 4. Time evolution of the potential drop across the Stern
layer ��S and that across the inner layer ��i obtained from the
numerical simulation �solid lines� and asymptotic analysis �dashed
lines� at the standard parameter set.
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F�t� = �
0

�

�f − f̄�dY, G�t� = �
0

�

�g − ḡ�dY .

Then, from Eq. �29� we obtain the rate of time change of
these quantities, for the case without ion adsorption, as fol-
lows:

Ḟ =
1

2
	��, Ġ = −

1

2
	��. �37�

On the other hand, F and G are composed of contributions
from the inner and middle layers: F=Fi+Fm, G=Gi+Gm.
The integrand in LHS of Eq. �20� is zero outside the inner
layer, and thus

Ḟi − Ġi = 	��. �38�

Then we can estimate the magnitudes of Ḟi, Ġi, Ḟm, and Ġm
from Eqs. �37� and �38�. For the interval t /T=−1 /8
3 /8,

��i is positive and the Boltzmann distribution predicts Ḟi

=0. Therefore, we can derive Ġi=−	�� from Eq. �38�. Fur-

ther, from Eq. �37� we can derive Ḟm= Ġm=	�� /2. In this
way, for the other interval t /T=3 /8–7 /8 we can predict the

following: Ḟi=	��, Ġi=0, and Ḟm= Ġm=−	�� /2. Here, we
concentrate on the development of cations only, as shown in
Fig. 5. In addition, we need to define the cation’s concentra-
tion flux J=−J+, where the current flux J+ is defined in Eq.
�8�. Note J�=−	��, where J� stands for the flux at infinity
�or in the outer layer�. We also need to define the diffusion
flux Jd=−�f /�Y and the conduction flux Jc=−	f�, both con-
tributing to the total flux, J=Jd+Jc; note that Jd�0 in the
outer layer, Jc is almost uniform over the middle and outer
layers, and Jd�−Jc in the inner layer although their magni-
tudes are very large.

Now we can address the dynamics of the ion transport.
First we consider the time interval t /T=−1 /8
1 /8. Since
���0 in this interval, the flux J� is positive, and the con-
duction flux Jc in the middle and outer layers also has the
same magnitude as this. So, Jc is uniform in the middle layer
as shown by the three arrows with identical lengths and solid
heads in the middle-layer column on the first row in Fig. 5.
On the other hand, in the inner layer f i has already been
decreased to zero, and so no cations are available, implying

that the flux is zero at the interface between the inner and
middle layers. Therefore for this time interval, crossover of
the cations from the middle to the outer layer through the
conduction flux is the only transport phenomenon, which re-
sults in the decrease of Fm as indicated by an inclined arrow
in the last column on the first row of Fig. 5. Considering that
fm evaluated at Y =0 is roughly proportional to Fm, we can
see that fm near Y =0 must decrease during this time interval
until it reaches a local minimum at t /T=1 /8 as shown in Fig.
3�b�; note that data shown in Fig. 3�b� are taken at Y
=0.2256 which is very close to the interface between the
inner and middle layers. For t /T=1 /8
3 /8, ��i is still
positive and Fi remains at zero, but ���0 and therefore the
flux direction is reversed. This then results in the increase of
Fm �see Fig. 5�. Thus fm increases until reaching maximum at
the end of the interval t /T=3 /8 as shown in Fig. 3�b�. For
t /T=3 /8
5 /8, ��i is now negative and so Fi is ready to
increase. In this time interval we still have ���0 and the
bulk continues to supply positive charges to the middle layer
but at the same time the inner layer now demands a larger
amount of positive charges �almost double the amount sup-

plied from the bulk to the middle layer; recall that Ḟi=	��

and Ḟm=−	�� /2 as predicted previously�. The middle layer
provides the inner layer with the required flux 	��, half by
the diffusion and half by the conduction. So, the net effect is
that the middle layer loses positive charges at the rate
	�� /2, resulting in the decrease of fm until reaching mini-
mum at t /T=5 /8. Notice that during this interval, the fluxes
in the inner layer are much larger than those in the other
layers, and Jc is almost the same as −Jd. However, the former
is slightly larger than the latter, as indicated by different
lengths of arrows in Fig. 5, which contributes to the increase
of Fi. For t /T=5 /8–7 /8, we have ���0 and the bulk takes
the positive charges away from the middle layer by conduc-
tion, and at the same time the inner layer pushes the charges
into the middle layer with double the amount taken away by
the bulk. The net effect is that fm increases until it reaches a
local maximum at t /T=7 /8. A similar explanation can be
made concerning the dynamics of anion concentration to
show that its behavior is the same as that of the cation in
the middle layer. The scenario described so far is enough to
prove that the middle layer should show a double-frequency
oscillation. Further, we have found the way in which it

iφ∆ ∞Φ iF
i n n e r

l a y e r

m i d d l e

l a y e r

o u t e r

l a y e r mFt

/ 8 /8T T− ∼ 0+ −

0/8 3 /8T T∼

3 / 8 5 / 8T T∼

5 / 8 7 /8T T∼

+ +

+−

− −

FIG. 5. Schematic illustrating
the cation flux �horizontal arrows�
in each of three layers and time
change of the integrated cation-
concentrations �inclined arrows�
Fi and Fm. The filled arrowheads
denote the conduction �or migra-
tion� flux whereas the open arrow-
heads the diffusion flux. The
dashed lines across interfaces in-
dicate the crossover of the flux
and the solid dots zero flux.
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responds to the inner and outer layers’ demand and supply of
ions during one complete cycle of ac.

Next, we present the accuracy of the asymptotic solutions
referring to the numerical ones for the full equations. For the
analysis we define the rms error

�rms =
1

	�YemV00
��

0

2� �
0

Yem

��num − �asy�2dY dt�1/2

,

where the spatial integration is performed over the distance
twice the inner-layer thickness: Yem=2Ye. We investigated
the effects of the half cell spacing L, the external frequency
f req, concentration c

0
*, and amplitude of the external potential

V
00
* on the accuracy. Since we are interested in estimation of

the accuracy of the asymptotic solutions for the practical
cases, we present the results in terms of the dimensional
parameters.

Figure 6 shows the dependence of �rms on f req, c
0
* and L. It

is seen that the errors overall remain at a low level, at most
13% for the case of the smallest spacing, L=5��m�. At low
external potentials, the error is not so much dependent on
f req; at high potentials, however, �rms increases significantly
as f req decreases �Fig. 6�a��. Nor is �rms sensitive to the con-
centration change as shown in Fig. 6�b�. The most significant
influence comes from the change of L and the effect is more
pronounced at high values of f req than at low ones, as seen
from Fig. 6�c�. This figure indicates that at f req higher than
200 Hz, �rms increases considerably as L decreases. The rea-
son for such error increase at low L is attributed to the large
fluctuation of the middle-layer concentrations caused by a
large electric field. Figure 7 shows time evolution of f in the
middle layer during one period for the case, L=5 �m and
f req=200 Hz, obtained from the numerical simulation. Sig-
nificant amount of fluctuation is observed and such behavior
must affect the inner-layer solutions through the higher-order
effect as addressed by Bazant et al. �24�. In addition, the
results shown in Fig. 7 are obtained by imposing f =g=1
rather than �f /�Y =�g /�Y =0 at Y =Ym in order to reduce the
error. With this modified boundary condition, �rms is reduced
to 6.9%, half of the previous result. On the other hand, for
the parameter set giving the highest error in Fig. 6�a�, the
LHS of Eq. �27� is calculated to be �1V

00
* /�*=3.9, while for

the case of Fig. 7 it is �1V
00
* /�*=7.8. Although the magni-
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tudes are larger than 1, the errors of the asymptotic solutions
are not so much large; this means that the criterion Eq. �27�
required for the present solution to be valid is too restrictive.

As is well known, the Debye-Hückel linear solutions are
powerful because they provide a simple boundary condition
on the electrode surface in solving the Laplace equation �5�
for the bulk potential. Furthermore, because they are based
on the assumption that temporal change of all the variables
follows the same mode as the external one differing only in
phase, it suffices to solve Eq. �5� once and for all without
need to integrate it in a temporal sequence. But before em-
ploying a linear solution in an engineering application, we
always raise the question as to how accurate the solution will
be for the application at hand. For the current model prob-
lem, it can be shown that the Debye-Hückel linearization
leads to the solution

� =
V00

1 + Q2�cos t − Q sin t

+
		

Ym
exp�− 	4	Y��sin t + Q cos t�� ,

where the constant Q is defined as

Q =
		 + 2	�2

Ym
.

This solution is of course valid for 	�1; note that this cor-
responds to a linear regime, whereas our main interest in this
paper lies in the nonlinear regime for 	�1.

Figure 8 presents the time evolution of the potentials ob-
tained by the asymptotic and Debye-Hückel approximation
in comparison with that given by the numerical method at
the parameter set, L=10 �m, f req=200 Hz, and c

0
*=c

0A
* . At a

low voltage V
00
* =0.05 V, Fig. 8�a�, both the Debye-Hückel

and asymptotic methods produce almost indistinguishably
accurate results; the rms error was found to be �rms=0.013
and 0.003 for the Debye-Hückel and asymptotic methods,
respectively. At a high volgate V

00
* =0.8 V, Fig. 8�b�, the

Debye-Hückel method overestimates the potential drop sig-
nificantly, while the asymptotic solution shows considerable
nonlinearity but very good agreement with the numerical so-
lution. We obtained in this case �rms=0.39 for the Debye-
Hückel solution, which is much larger than that given by the
asymptotic method, �rms=0.058. The rms error of the Debye-
Hückel solution turns out to be still large, �rms=0.29, at an
increased spacing L=100 �m. It was found that, for this pa-
rameter set, the error of the linear solution is very small near
Y =0, but it increases rapidly as distance from the electrode
surface is increased. This implies that the error is caused by
the overestimation of the potential drop across the inner layer
with the given parameter set.

V. DISCUSSION ON MULTIPLE-LAYER STRUCTURE

We have shown that the dynamics of ion transport within
the thin layer near the electrode surface under ac in the non-
linear regime can be explained in terms of quadruple-layer
model including the Stern, inner, middle and outer layers,

which can describe even the transient phenomenon. Since
this structure is unique for ac against dc, we may call this the
“dynamic electrical-quadruple-layer” �DEQL� model. The
outer layer vanishes after the initial transient state. Therefore,
when the steady �not static� state is of our only concern as
usual, the term “dynamic electrical-triple-layer” �DETL�
should be appropriate. The main difference between our
DETL model and the classical EDL model lies in the exis-
tence of the middle layer outside the inner layer in DETL.
Figure 1 illustrates the most important of the characteristics
contained in each of these four layers, i.e. the difference in
the dynamical range of the cation’s concentration. Need-
lessly to say, in general the inner layer is far much thinner
and the magnitude of the concentration is far larger than this
figure shows. Also shown in this figure is the order of each
layer’s thickness in terms of the dimensional parameters. The
order of the middle-layer thickness is the same as O��dif�,
where �dif is defined as Eq. �4�.

The inner layer in DETL corresponds to the “diffuse
layer” in the EDL. However we assert that use of “diffuse
layer” instead of the “inner layer” in the DETL is not rea-
sonable considering the present solution structure. In many
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practical cases where a static disturbance is given in the form
of dc or a constant zeta potential and the steady state is the
only concern, the diffuse layer in the EDL model shows dis-
tribution of ionic concentrations determined by the balance
between the diffusion and conduction effects, and the outside
of the EDL is occupied by the neutralized bulk. The term
“diffuse layer” therefore must be understood as a word used
to represent the unique role of diffusion in this layer as a
counteractive transport against the conduction. However, for
the case with ac, the diffusion term is also dominantly im-
portant in the middle layer. Therefore, assigning “diffusion
layer” to either the inner or outer layer may bring forth con-
fusion and misunderstanding. On the other hand, the most
diffusive action can be found in the outer layer during the
transient period because it shows slow spreading of the con-
centrations throughout the layer; such diffusive spreading
has been also predicted by Bazant et al. �24� for the transient
problem under dc. Therefore, “diffusion layer” should be
given to the outer layer of DEQL, if necessary.

As a suitable term for the middle layer, we may use
“buffer” layer, in view of its role as an intermediate storage
place in between the inner layer and the bulk �or the outer
layer for the transient case�. The potential drop occurs mostly
across the Stern and inner layers in our DETL model, be-
cause both cations and anions are neutralized in the middle
layer. Furthermore, its magnitude can be determined without
resorting to the middle layer’s dynamics. Therefore as far as
the potential drop and its subsequent effect, i.e., slip velocity,
are concerned, we do not need to consider the middle layer.
However, it should play an important role when a higher-
order correction to the present asymptotic solutions is con-
sidered in strongly nonlinear cases, i.e., at much higher V00
and 	 and much lower � to the extent that Eq. �27� is vio-
lated. Bazant et al. �24� also implied the existence of this
kind of layer, called the depletion zone, but the zone soon
disappeared and merged into the outer layer and then into the
bulk. As indicated in Fig. 5, the magnitude of the conduction
flux within the middle layer is larger than that of the diffu-
sion flux. So, we may be tempted to think that the conduction
term has the same importance as the diffusion term in the
middle layer �contrary to our pre-assumption for the middle-
layer analysis�. However, this is not correct, because the con-
duction flux is spatially uniform while the diffusion flux is
not, as shown in Fig. 5; that is, the gradient of the conduction
flux which appears in the Nernst-Planck equation becomes
zero and so can be neglected.

Existence of the middle layer was also implied by Dukhin
and Shilov from Ukrainan school for the steady �30,31� and
unsteady �32� external forcing. They proposed the governing
equation in the same form as Eq. �26� and presented the
solutions for the case of ion transport around a spherical
particle. However, no double-frequency oscillation was con-
firmed in the their solutions �32�. Olesen �33� also presented
the asymptotic analysis to the ion transport in the three layers
outside the Stern layer �Debye, diffusion and bulk in their
terms� for the weakly and strongly nonlinear regimes but
without ion adsorption. For the case of the weakly nonlinear
regimes, we have checked that his formula �2.137� is equiva-
lent to ours �23�. Our analysis is however unique in that we
presented a fairly accurate prediction of the ion transfer

through each layer by using a very simple formula like Eqs.
�37� and �38�. Discussion presented in this paper by using the
quantitative analysis provides very clear insight into the ion
transport process. The problem of using unsuitable terminol-
ogy concerning the multiple-layer structure has also been
raised in this paper, which should be a benchmark for further
discussion on the standardization. In addition, we have pre-
sented the range of errors to be expected from the asymptotic
solutions. Finally, we proposed the asymptotic analysis to the
ion transport problem when the ion adsorption is included,
its specific effects being presented in the following section.

VI. EFFECT OF THE ION ADSORPTION

We now address the effect of the ion adsorption on the
solution of the ion-transport equations. When adsorption oc-
curs at the interface between the Stern and inner layers, the
ion concentrations within the inner layer must be decreased
which in turn should result in the decrease of the potential
drop across the inner layer, ��i, as shown in Fig. 9�b� for the
case of ion adsorption in contrast with Fig. 9�a� for the case
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without ion adsorption. The amount of potential drop within
the Stern layer however cannot be intuitively predicted. Fig-
ure 10 shows the instantaneous potential distribution at t=0
obtained from the asymptotic solution for the two cases with
ion adsorption in comparison with one without adsorption. It
reveals that the amount of the Stern-layer potential drop is
not so much changed with the adsorption. This means that
the magnitude of the potential at the outer edge of the inner
layer, ��, must increase when the adsorption occurs.

The effect of the ion adsorption on the electrokinetics
should manifest itself as the change of slip velocity. It can be
shown that the steady slip-velocity u

slip
* at the outer edge of

the inner layer along a tangential, x* direction caused by the
potential drop within the inner layer is given from

uslip
* =

��0

�
���

i
*
��

�
*

�x*
� ,

where � is viscosity of the bulk electrolyte and the symbol
� � denotes the time average. In deriving this formula we
assumed that the adsorbed ions are immobile along the tan-
gential direction. For the case of parallel facing electrodes,
the potential �

�
* is uniform over the plane parallel to the

electrode surface leading to ��
�
* /�x*=0, and so no fluid mo-

tion is expected to occur in this case. Otherwise when �
�
*

varies on the plane, the slip velocity is proportional to ��
i
*

and ��
�
* /�x*, and we can estimate the order of magnitude of

the latter by �
�
* /L. So, we can define a virtual slip velocity

for the case of parallel facing electrodes as follows:

uslip
* =

��0�*2

�L
uslip,

where uslip is the dimensionless “virtual” slip velocity de-
fined as

uslip = 	2�����i� . �39�

The idea implied by the introduction of the virtual slip ve-
locity is to indirectly catch the effect of the ion adsorption on
the slip velocity for the general case of non-parallel elec-
trodes.

Figure 11 shows the dependence of uslip-frequency curves
on the effective Stern-layer thickness �Seff for the case with-
out adsorption, 
max=�=0, and that on the maximum avail-
able areal concentration 
max at �Seff=3.5 nm and �=0.2 in
Fig. 11�a� and at �Seff=17.5 nm and �=0.2 in Fig. 11�b�.
Without exception, each of the curves exhibits a critical fre-
quency at which the slip velocity becomes maximum. For
the case of coplanar electrodes, theory has always overpre-
dicted the experimental measurement as for the slip velocity
up to one or two order of magnitude �5,6,8,11,25�. Increase
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of �Seff gives rise to decrease of the maximum slip velocity,
but the critical frequency shifts to higher values as shown in
Fig. 11�a�. This then results in overprediction of the critical
frequency. When the ion adsorption is included, maximum
slip velocity increases with 
max at low values of 
max as
shown in Fig. 11�a� �compare the dashed curve of 
max=0
and �Seff=3.5 nm with the solid curve of 
max=1 and �Seff
=3.5 nm�; this kind of unexpected increase of the slip veloc-
ity at low values of 
max seems to be due to the momentary
increase of the magnitude of ��. At 
max high enough, i.e.,
for 
max�1, uslip decreases monotonically with 
max as
shown in Fig. 11�a�. Remarkably, the critical frequencies are
now much smaller than the case without adsorption. Al-
though the results for adsorption in Fig. 11�a� are obtained
with fixed �Seff and �, adjustment of these parameters should
produce a lot of variation in the magnitude of uslip as well as
the critical frequency. For instance, Fig. 11�b� presents an
example at �Seff=17.5 nm, and it indeed reveals that the
critical frequencies are higher than in Fig. 11�a�. Applying
the present asymptotic theory including the ion adsorption to
the case of nonparallel electrodes must be interesting but is
beyond the scope of the present study.

VII. CONCLUSIONS

We have shown, with the aid of asymptotic analysis and
numerical simulation, that the ion-transport equations intrin-
sically contain triple-layer or quadruple-layer solutions at
large values of the parameter 	, when the layer is receiving
ac potential. Excluding the Stern layer, the inner layer is the
thinnest and the concentrations develop in time with a
strongly nonharmonic behavior. The concentrations of the
positive and negative ions show the temporal behaviors at
the same frequency as the external one with the time-phase
difference of a half period from each other leading to the
corresponding potential drop. In the middle layer, both the
positive and negative ion concentrations develop in the same
magnitude and same time phase, and so no potential drop
occurs. This layer can be considered as a reservoir or buffer
supplying ions to or receiving them from the inner layer and

bulk �or outer layer� depending on their demand during a
period. This give-and-take process results in the temporal
oscillation of the concentrations with a period double the
forcing one. The outer layer is characterized by a slow dif-
fusion of the excess concentrations which were initiated by
the initial conditions or the nonzero steady components de-
veloped from the beginning in the inner layer. In this layer
too, no potential drop is expected, because the positive and
negative ion concentrations show identical behavior. After
the transient period this layer vanishes and is absorbed into
the bulk.

We have shown that nonspecific adsorption of ions at the
interface between the Stern and inner layers can exert con-
siderable influence on the virtual slip-velocity depending on
the corresponding parameter values. Since, for a given
amount of ion transport from the buffer zone, the ion con-
centrations spread in the inner layer are decreased due to the
adsorption, the potential drop in the inner layer must de-
crease, and this in turn leads to the lower slip velocity at the
outer edge of the inner layer.

In the near future we will apply the present method to the
calculation of the slip velocity on a pair of coplanar elec-
trodes under ac and compare the solutions with the experi-
mental data presented by Green et al. �8�. We also have a
plan to study the improvement of the solutions given in this
paper for the case of large fluctuation of concentrations in the
middle layer. To take this effect into consideration, we may
need to add some other dynamic variables or pertinent equa-
tions. Development of numerical schemes that consider the
steric effect �26,34� of the concentrations on the potential
drop may also be a good subject of future study. We also plan
to deliberate on including the ion transport along the tangen-
tial direction on the electrode surface as tried by Chu and
Bazant �27�.
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